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a b s t r a c t

Knots on digital images of 51 full veneer sheets, obtained from nine peeler blocks crosscut from two
35-foot (10.7 m) long logs and one 18-foot (5.5 m) log from a single Douglas-fir tree, were detected using
a two-phase algorithm. The algorithm was developed using one image, the Development Sheet, refined
on five other images, the Training Sheets, and then applied to all remaining sheets. In phase one, global
thresholding was used to segment the image through a series of morphological operations to isolate
regions likely to contain knots. In phase two, adaptive thresholding was applied to grey scale and red
component segmented images to improve the accuracy of the segmented knot.

Overall performance, judged in terms of confusion matrix performance metrics, was better for the red
component images. Red component recall (true positive) rate was 1.00, 0.99, and 0.96 for the Develop-
ment, Training, and complete sets, respectively. For the grey scale images, recall rates were 0.96 for all
sets. Red component accuracy was 0.76, 0.92, 0.73 (Development, Training, and complete) and those for
the grey scale images were 0.71, 0.85, and 0.69, respectively. Red component precision also exceeded
that of the grey scale (0.75, 0.93, 0.73 compared to 0.72, 0.88, 0.70). A greater percentage of knots (78%)
segmented from red component images were correctly sized, while 16% had more pixels than required
and 6% had fewer pixels. Comparative figures for the grey scale images were 57% correctly sized, 2% with
more pixels, and 42% with less pixels.

Based on our results, we will adopt the red component image for continuing work with digital veneer
images from a sample of Douglas-fir trees selected on the basis of acoustic velocity measures. Together
with acoustic measurements of the veneer sheets, we are investigating the extent that the number,

size, and spatial arrangement of knots influences the average stiffness of veneer sheets, with a view to
determining if a relationship exists between the average stiffness of veneer sheets in a peeler block,
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.1. Stiffness and acoustic measurements

Acoustic technologies for assessing stiffness, such as Fibre-
en’s Director HM200TM, FAKOPP’s TreeSonic, and the Metriguard
600TM (a product of Metriguard Inc.) have become increasingly
opular in forest and processing environments. Their popularity
rises from the tools being relatively inexpensive, simple to use,

nd because they permit testing of wood samples to be done
on-destructively. This provides opportunities for better resource
uality assessments (Chauhan and Walker, 2006; Cown, 2005),
etter log segregation into quality classes (Dickson et al., 2004;
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s of the parent tree from a range of silvicultural treatments.
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Amishev and Murphy, 2008), better board segregation into stiffness
classes (Carter et al., 2006), and early screening for genetic heri-
tability (Kumar et al., 2002), yielding great potential to add value all
along the forest-to-products chain. The earlier well-informed deci-
sions are made within the forest-to-products chain, the greater the
potential value addition. Thus if it can be shown that strong rela-
tionships exist between tree and product, then those relationships
can then be used to generate added value.

Relationships between trees and products have been investi-
gated by Dickson et al. (2004), Lasserre et al. (2007), Raymond et al.
(2008), and others, for radiata pine (Pinus radiata D Don). Dickson
et al. (2004) found acoustic velocity measurements of standing

trees sourced from thinned (350 stems/ha) plots to be closely
correlated to that of the logs cut from those trees. They also found
the relationship between velocity measurements of those logs and
machine stress grades of the constituent boards to be even stronger,
particularly for boards sawn from outerwood. Lasserre et al. (2007)
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emonstrated that branches and bark influence acoustic velocity,
nd when stems are delimbed and the bark is removed, velocity,
nd hence stiffness, significantly increases. Stiffness decreases
inearly up a stem and has been found to be lower at each height in
he stem for trees grown on thinned sites (Raymond et al., 2008).
or Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), acoustic
elocity readings also decrease with increasing height in the stem,
nd demonstrate good correlation, when combined with green
ensity measurements, with veneer grade recovery (Amishev and
urphy, 2008).
In addition to the presence of branches providing a source of

ariation for acoustic measurements, knot size also contributes to
he variation. Amishev and Murphy (2008) found both the presence
nd size of knots to be negatively correlated to acoustic velocity and
uggested that acoustic measurements could be incorporated into
ptimal crosscutting tools (known also as bucking tools) based on
arket requirements for wood stiffness by accounting for the effect

f branch size and other variables.

.2. Knot detection and performance measures

To add to the sources of variation, knots and other defects
ome in a variety of sizes, shapes, types, and colours. When boards
re manually inspected, the ability to accurately recognise, locate
nd identify surface knots has been assessed at 55% (Polzleitner
nd Schwingshakl, 1992) and at 68% (Huber et al., 1985). Even
ith automated systems for detecting knots in hardwood lumber,
uehlmann et al. (2007) suggest that a 100% accuracy rate is not
lways achievable.

In research environments, accuracy rates exceeding 70% and
pproaching the 100% level have been achieved. Using a two stage
pproach known as sweep-and-mark (Forrer et al., 1988), defect
ccuracies on Douglas-fir veneer images of 94, 89, and 79% were
chieved with statistical, morphological, and colour-cluster algo-
ithms, respectively. When extending their research to exclude
itch pockets Forrer et al. (1989) found that accuracies increased
o 99, 98, and 86%, respectively.

In addition to accurately detecting the presence or absence of
nots and other defects on Douglas-fir veneer sheet images, Funck
t al. (2003) examined the accuracy of defect size accuracy, mea-
ured on a pixel basis. Overall, pixel accuracy of loose and tight
nots averaged about 95 and 90%, respectively. The accuracy was
ot significantly different across a range of colour spaces obtained

rom Douglas-fir veneer images, nor has it been found to differ
ignificantly for transformed colour spaces (Brunner et al., 1992).
owever, with image segmentation performed via a fuzzy neural
etwork on radiata pine boards, Ruz et al. (2005) achieved a pixel
ccuracy of 94%, along with a 95% defect detection rate and a 6%
alse positive rate.

Accuracy and other performance metrics can be derived from a
onfusion matrix (Kohavi and Provost, 1998; Fawcett, 2006). The
-by-2 matrix contains four cells: true positives (TPs), false posi-
ives (FP), true negatives (TNs), and false negatives (FN). In some
ettings, the correct identification of TPs is important, whereas in
ther settings it may be more important to correctly identify TNs
Sokolova and Lapalme, 2009). For our research, the true positive
ates and false negative rates are of primary importance. The true
ositive rate, also known as the recall rate, is the proportion of
ositive cases that are correctly identified (Eq. (1)). The false neg-
tive rate is the proportion of positives cases that are incorrectly
lassified as negative (Eq. (2)).
ecall = TP
(TP + FN)

(1)

N rate = FN
(TP + FN)

(2)
ics in Agriculture 70 (2010) 163–171

Other performance measures derived from the confusion matrix
include accuracy and precision. Accuracy is the proportion of the
total number of predictions that are correct (Eq. (3)) while precision
is the proportion of positively identified cases that are correct (Eq.
(4)).

Accuracy = (TP + TN)
(TP + FP + TN + FN)

(3)

Precision = TP
(TP + FP)

(4)

1.3. Veneer stiffness project

In our research, unlike other studies that consider the part of
the forest-to-products chain from logs to lumber (e.g. Abbott and
Kline, 2003; Rinnhofer et al., 2003), we consider the chain from tree
to veneer. Throughout that chain, we examine stiffness via acous-
tic measurements. Our research extends to examining knots on the
acoustically measured veneer sheets. This will enable the devel-
opment and evaluation of models that include not only acoustic
but also knot variables for improved prediction of stiffness. This
paper focuses on the knot detection portion of that larger project
in a desktop application. The aim of our knot detection project is to
accurately detect knot location and size on digital veneer images
with particular emphasis on achieving high recall rates. The over-
all aim of the larger project is to determine if a relationship exists
between the average stiffness of veneer sheets in a peeler block,
stiffness of the log, and stiffness of the parent tree, and to investi-
gate the extent these relationships are influenced by silvicultural
treatment, stand, tree, log, and knot variables.

2. Method

2.1. Sample material

The Stand Management Cooperative (SMC) managed by the
University of Washington and involving a large number of for-
est landowners and other co-operators, has an extensive system
of Douglas-fir research installations throughout the coastal Pacific
Northwest. Installations were established between 1987 and 1989.
At the time of establishment, five permanent plots (a control
plot plus four treatment plots that followed prescribed thinning
regimes) were set up at each installation. For this project, four SMC
installations representing four different ownerships were selected;
two in Washington and two in Oregon. One of the installations
had only four plots as the fifth, a treatment plot, had storm dam-
age. Project logistics required these installations to be reasonably
accessible by road.

A circular 0.25 acre (0.1 ha) plot was established in the geomet-
ric centre of each of the five plots. Time-of-flight acoustic speed
was obtained over a 1 m distance approximately centred at breast
height (with one probe placed about 50 cm below breast height
and the other probe placed approximately the same distance above
breast height) on all of the trees within the circular plot using an
acoustic device. Three readings were obtained at each of three loca-
tions approximately 120◦ apart around the stem circumference,
providing nine observations per tree. The nine stress wave times
were converted to mean acoustic velocity for each tree. Trees on
each plot were listed in ascending order of acoustic velocity and a
stratified random sample was selected. Two trees were randomly

chosen from the lowest 10%, four from the next 11 to 50%, four
from 51 to 90%, and two from the top 91 to 100% on each plot. One
half of the trees in each stratum were randomly chosen for veneer
conversion and the remainder for lumber conversion (Briggs et al.,
2008).
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Table 1
Summary of data for the parent tree, logs, peeler blocks, and veneer sheets used in the image analysis.

SMC
installation

Plot Tree Diameter at
breast height
(in.)

Total
height
(ft)

Mean acoustic
time-of-flight
(ms/m)

Acoustic
class

Long
log

Peeler
block

Large end
diameter
(in.)

Small end
diameter
(in.)

No. of
sapwood
half sheets

No. of full
sheets

No. of
heartwood
half sheets

803 1 124 11.9 108 258 3 1 1 13.6 11.4 0 9 0
2 11.4 10.8 0 8 1
3 10.8 10.7 0 8 0
4 10.7 10.4 0 8 0

2 1 10.4 10.4 0 6 0
2 10.4 9.2 0 5 2
3 9.2 8.4 1 3 0
4 8.4 7.2 0 3 0

3 1 7.2 6.2 0 1 0
2 6.2 5.0 – – –

N ities between 51 and 90% of the maximum acoustic velocity measured on the plot. Peeler
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est, realign the image to the viewing window, and to inscribe a
rectangle within the tape-measure to represent the veneer sheet
boundaries (Fig. 2). Knot detection algorithms worked within that
bounded region and were developed using the veneer sheet shown
otes: Acoustic class 3 comprises trees within the plot that had mean acoustic veloc
lock 3–2 was discarded at the mill and not peeled.

Trees were felled, delimbed, and topped at the merchantable
iameter limit of 5 in. (12.7 cm). The acoustic velocity in each of the
esulting delimbed stems was measured with an acoustic device.
eneer sample trees were next crosscut into long logs (target

engths of 35 ft (10.7 m) including trim) and again tested acousti-
ally. Long logs were further crosscut into mill-length logs (17.5 ft
5.3 m) including trim) and re-tested with the acoustic device. Mill-
ength logs were crosscut into two veneer blocks, each 8 ft 4 in.
2.5 m) long. This latter operation was done at the mill and the
locks were then individually measured and re-labelled for identifi-
ation purposes. No acoustic testing was done on the veneer blocks.
he 697 blocks in the study sample were steamed overnight and
hen peeled into veneer over a period of 2 days. During the peeling
rocess, a tracking methodology was used that allowed each sheet
o be traced back to the peeler block and consequently to the posi-
ion within the parent tree from which it came. Each veneer sheet
rom a particular block was labelled with the block number and the
rder in which it was peeled from the block. Veneer thickness was
.15 in. (3.8 mm) and the target peeler core diameter was 3.5 in.
89 mm). Full veneer sheets had dry target sizes of 102 in. (2.59 m)
n length and 52 in. (1.32 m) in width. After being dried at the veneer

ill, the veneer sheets were shipped to the US Forest Products Lab-
ratory (FPL) in Madison, WI where they were non-destructively
ested for stiffness using a Metriguard 2600TM veneer tester.

.2. Veneer images

The photographic analysis described in this paper is based
n high-resolution digital images (3872 × 2592 pixels, 24-bit RGB
olour depth) taken by FPL technicians using a Nikon D80 cam-
ra mounted about 10 ft (3 m) directly above the veneer sheet. For
ighting, the camera’s flash was turned off and two 600 W quartz
amps were used, mounted about 8 ft (2.4 m) above the veneer sheet
t angles of 45◦. The sheet being photographed was placed on a
rame with measuring tapes affixed to the four sides of the frame
or reference.

The images selected for this analysis represent all the full veneer
heets (51 full sheets that came from nine peeler blocks) produced
rom a single Douglas-fir tree (number 124 from treatment plot 1 on
MC installation 803). The installation is located on flat ground in
rivate ownership near the small community of Matlock, in west-
rn Washington. Data on the parent tree, 9 peeler blocks, and 51
eneer sheets produced are summarised in Table 1. A tenth peeler
lock, the topmost block cut from the stem, was rejected at the mill

ue to its small diameter, large knots, and irregular form. It was sent
o the chipper rather than the peeler and therefore is not included
n this analysis.

In addition to the 51 full veneer sheets, 4 half sheets were peeled
rom this tree. As far as we have been able to determine these
Fig. 1. Original image.

comprise all of the usable veneer that was peeled from this tree.
Information on roundup scraps and broken sheets was not col-
lected, so some of the wood from the nine peeled blocks has not
been accounted for.

2.3. Digital image processing

Algorithms to detect knots on grey scale and red component
veneer images were developed using MATLAB® and its image pro-
cessing toolbox (Gonzalez et al., 2004). The RGB images were
pre-processed to reduce the raw image (Fig. 1) to the area of inter-
Fig. 2. Bounded veneer sheet used in image processing.
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Fig. 3. Steps of the knot dete

n the figure (known hereafter as the Development Sheet), and
uned using five other veneers sheets (the Training Sheets). The
evelopment Sheet was the first sheet of the first peeler block
f Long Log 2, thus was from the block in the middle of the tree
Table 1). It was chosen simply as it was the first sheet in the veneer
abelling sequence. The Training Sheets were the next five con-
ecutive sheets peeled from that block. After the knot detection
lgorithms had been tuned, they were applied to the remaining
eneer sheets. All 51 images of full sheets, from 9 blocks from the
ame tree, were processed in this way.

The knot detection algorithms comprised two phases. In phase
ne a global approach was applied to the veneer image, and after
onversion to grey scale and a series of morphological operations,
egions that demonstrated potential to contain knots were seg-
ented. In phase two, a local approach was applied to each of the

egmented regions. The purpose of the phase two algorithm was
o refine and improve on the accuracy of the knot’s location and
ize.

The phase one global approach was applied to a grey scale image.
lobal threshold values, which differed from sheet to sheet, were
ssigned automatically using Otsu’s method (Otsu, 1979). Scaled
hreshold values were then used to transform the intensity of the
eneer image to enhance the “knotty” regions. The intensity trans-
ormation was achieved by mapping the intensity values between
0 and 75% of the threshold value, T, obtained from Otsu’s method,
hus clipping out values less than 50% of T and greater than 75% of T.
he values within the defined range [0.50T, 0.75T] were mapped to
he full [0, 1] range. A binary image was then formed from the inten-
ity transformed image using a relational operator with a threshold
alue of 50. Morphological operations that first dilated the binary

mage using a rectangular structuring element, then eroded the
esultant image using a disk-shaped structuring element created
bjects that were subsequently traced and labelled as knots. In
everal cases, features other than knots, i.e. false positives, were
egmented by this process.
pplied to a grey scale image.

From a practical viewpoint, false positives are not as much of a
problem as false negatives. This is because removing a false posi-
tive reading is faster and easier than inserting a region of correct
proportions to correct a false negative. Thus the false positive rate
was not a concern and the effectiveness of the algorithms was
judged by the true positive and false negative rates. The aim was
to develop an algorithm that maximised the true positive rate and
hence, as the two rates sum to one, minimised the false negative
rate.

The phase two refining algorithm worked with both grey scale
and red component images. The main steps within phase two are
described below and illustrated by way of example in Fig. 3(a)–(i)
(grey scale) and Fig. 4(a)–(i) (red component).

Each region delineated in phase 1 was cropped around the phase
1 solution (Figs. 3a and 4a). The cropped image is not only smaller in
size than the original image, but also requires less memory to pro-
cess, and allows faster computations. A grey scale (Fig. 3b) or red
component (Fig. 4b) image was formed from the cropped image,
then subjected to an intensity transformation to enhance the knotty
area (Figs. 3c and 4c). This was achieved by application of Otsu’s
method to retrieve a new threshold value for the cropped image.
The threshold, Tc, was then used in an intensity transformation
that scaled values between [0.9Tc, 0.9Tc + 0.05] to the full range.
The complement of the intensity transformed image was then com-
puted and a binary image formed by thresholding with a value of
250 using a relational operator. Subsequent segmentation of the
image through application of the Laplacian of a Gaussian (LoG)
detector, which takes the second derivative (the Laplacian) of the
Gaussian function h(r), given by

2 2

h(r) = −e−(r /2� )

where r2 = x2 + y2 and � is the standard deviation, isolated the
edges (Figs. 3d and 4d). A combination of morphological image
processing techniques, dilation and erosion using a disk-shaped
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Fig. 4. Steps of the knot detectio

tructuring element, were then applied and any holes were filled
Figs. 3e and 4e). In our testing of the phase two algorithm with a
ange of knots from the Development sheets, we found that some
arts of knots were not picked up by the edge detection method.
or this reason a Boolean image (Figs. 3f and 4f) that was created
y thresholding (using a 250 threshold) the intensity transformed

mage (Figs. 3c and 4c) was combined with the filled image using
logical operator (Figs. 3g and 4g). A further series of morpho-

ogical operations using a disk-shaped structuring element were
erformed, giving the image components shown in Figs. 3h and 4h.
ounded regions were then created by tracing the existing objects,
o determine the final knot size and location (Figs. 3i and 4i).

In cases where more than one bounded region was detected, the
egion most likely to contain a knot was determined by filtering
ut less likely regions and prioritising the remaining regions. Less
ikely regions were defined as those for which the height exceeded
he width by more than 30%, those for which the height exceeded
.5 in., and those for which the height and width were each less
han one-eight of an inch. Knots were prioritised according to dis-
ance and size. Distance, d, was measured as the Euclidean distance
etween the centres of the original segmented region (xc, yc) and
hat region under investigation (xr, yr).

hat is, d = [(xc − xr)
2 + (yc − yr)

2]
1/2

Size was measured in terms of the region’s area, A. The ratio of
rea over the square of distance was then computed and the max-
mum, p, selected, thus favouring larger regions in close proximity
o the original region.

i.e. p = max[Ai/d2
i ]
for all bounded regions i within the cropped image

After the algorithms had run their course and the segmented
egions (comprising both true positives and false positives) had
lied to a red component image.

been plotted on the veneer sheet image, false negatives (i.e. those
knots that should have been detected but were not) were deter-
mined by visual inspection.

2.4. Algorithm performance measures

Confusion matrix entries (Table 2) were counted for each of the
grey scale and red component approaches for each veneer sheet.
The two approaches were compared, on a sheet by sheet basis, in
terms of the classifier performance indicators: recall and false neg-
ative rates, accuracy, and precision, as calculated from Eqs. (1), (2),
(3), and (4), respectively.

Further performance measures, size accuracy and prefer-
ence, were introduced to indicate the accuracy in size of the
segmented regions, and to indicate which segmented region
(grey or red) provided the more accurate representation and
hence was the preferred option. These measures were visually
assessed.

Size accuracy was assessed for the true positives, i.e. those knots
that were correctly detected and measured in terms of three vari-
ables: accurate, under-sized, or over-sized. “Under-sized” indicated
that insufficient pixels had been captured during the segmentation
process. The contrary was true for “over-sized”. The choice of these
variables, rather than a pixel count, was based on the premise that
no matter the extent to which a segmented region surrounding a
knot is over-sized or under-sized, it still needs a series of opera-
tions (e.g. delete region, and manually drag and drop a new region)
to produce an accurately sized region. The distinction was made
between under-sized and over-sized to observe any differences
between the two (grey vs. red) approaches.
Image component preference indicated which of the two images
achieved the better fit to actual knot size and location. Preference
was measured using Boolean variables; (1, 0) indicated that the
knot segmented using the grey scale image was preferred. The con-
verse was true for (0, 1). And in cases where the results appeared
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Table 2
Confusion matrix with cell definitions.

Actual

Detected p n

Y True positive
Actual knot correctly classified

False positive
Actual feature, other than a knot, incorrectly classified as a knot

N False negative
Actual knot not detected and hence not classified

True negative
Actual feature, other than a knot, detected in phase 1 and correctly
removed from analysis in phase 2

Fig. 5. Accurately detected grey scale and red component knots.
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dard deviations of 0.02 and 0.03, respectively. Differences between
means, as measured by a paired student’s t-test, were not signif-
icant (p = 0.35). Recall rates obtained for the 51 veneer sheets are
shown in Fig. 7. The Development and Training Sheets are shown
as black squares.

Table 3
Confusion matrix entries for knots detection on the grey scale and red component
images of the Development Sheet.
Fig. 6. Over-sized (grey) and

dentical (after zooming in) each method recorded a preference
ndicator (1, 1).

For example, while both segmented regions in Figs. 3i and 4i are
ver-sized, the red component image clearly demonstrates a better
t, hence is preferred. Fig. 5 illustrates a knot where both grey and
ed knot images are assigned an “accurate’ status for region size.
he grey scale image represents the outer limit of what passed as
accurate” with some lighter coloured pixels visible to the left of
he knot. Modelling preference was allocated to the red scale image.
n Fig. 6, the grey scale region is “over-sized”, the red component
egion “under-sized” and the preference allocated to the grey scale
mage.

Interpretation of the performance metrics was achieved through
raphical inspection of results combined with regression and sta-
istical analysis. Excel®’s TTEST statistic was used to determine
hether the samples (recall rate, accuracy, precision, and prefer-

nce) from the grey scale and red component images were likely to
ave come from the same two underlying populations having the
ame mean. The Excel function output is the fractional probability
f the Student’s t-distribution. Thus a returned value of 0.05 corre-
ponds to a 95% confidence level for rejecting the null hypothesis.
he null hypothesis is that there is no difference between the two
eans.

. Results

.1. Confusion matrix performance metrics
True positive (recall) rates for the complete sets of red com-
onent and grey scale images were not significantly different.
owever, there was a clear, and statistically significant, difference

n accuracy and precision, both of which were greater for the red
r-sized (red) knot detection.

component images. Knot size accuracy was also greater with the
red component images leading to an average 90% preference score
for red component segmented knots.

3.2. Recall rate (Eq. (1))

The confusion matrix for the Development Sheet shown in
Table 3 contains entries for both grey scale and red component
images. The veneer sheet contained 113 knots (TP + FN) of which
99 were accurately detected using the grey scale image and all 113
detected with the red component image. Hence the recall rate for
grey scale and red component Development Sheet images was 0.96
and 1.00, respectively.

Mean recall rate with the Training Sheets was 0.96 for the grey
scale images (ranging from 0.942 to 0.975) and 0.99 (ranging from
0.975 to 1.00) for the red component images, each with standard
deviations of 0.01. For the complete set of images, mean recall rate
for both grey scale and red component images was 0.96 with stan-
p n

Grey Red Grey Red

Y 99 103 38 34
N 4 0 2 4
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3.7. Preference
ig. 7. Recall rates, grey scale vs. red component, rates of the 51 veneer sheets.

In many cases recall rates of the testing sheets exceeded the
ower bounds of the grey and red component Training Sheets (i.e.

ere in excess of 0.942 for grey and 0.975 for red). Of the 46 testing
heets, 34 grey and 10 red sheets exceeded the lower bounds. Fur-
hermore 12 of those grey sheets had recall rates that exceeded the
pper bounds of the Training sheets (i.e. in excess of 0.975). Three
ed testing sheets attained the upper red bound with perfect recall
ates of 1.0.

.3. False negative rate (Eq. (2))

The false negative rate, i.e. ratio of actual knots that were not
etected over the total number of knots on each veneer sheet, aver-
ged 0.04 (standard deviation 0.03) for both grey scale and red
omponent images. This corresponds to an average of 5 knots per
heet.

.4. Accuracy (Eq. (3))

Accuracy, in comparison to the recall rates, was lower for both
rey and red component images. This was due to false positive
eadings. Accuracy associated with the grey scale Development
heet image was 0.71 while that for the red component image was
.76. For the Training Sheets, mean accuracy increased to 0.85 and
.92, with standard deviations of 0.01 and 0.03, for grey and red

mages, respectively. The greater accuracy of the Training Sheets
s clearly seen in Fig. 8 with the cluster of black boxes at the
op right of the figure. Accuracy between the means of the grey
cale and red component images was significantly different, aver-
ging 0.69 (standard deviation 0.12) and 0.73 (standard deviation

.13) for grey scale and red component images, respectively. The

ncrease in accuracy due to the red component image was equal to
bout 5%.

Fig. 8. Mean accuracy, grey scale vs. red component, of the 51 veneer sheets.
Fig. 9. Mean precision, grey scale vs. red component, of the 51 veneer sheets.

3.5. Precision (Eq. (4))

Like accuracy, precision was also influenced by false positive
readings. Precision associated with the grey scale Development
Sheet image was 0.72 while that for the red component image
was 0.75, respectively (indicated by the black box at (0.72, 0.75) in
Fig. 9). For the Training Sheets, mean precision increased to 0.88 for
the grey scale images and to 0.93 for the red component images,
with standard deviations of 0.01 and 0.02, respectively. The five
associated points are shown by the black boxes clustered in the top
right corner of the figure. As all points in the figure lie on or above
the diagonal, the greater precision due to the red component image
is clearly evident. Overall, mean precision was 0.70 and 0.73 for grey
and red images, respectively. Furthermore, the paired t-test statis-
tic (p < 10−10) strongly indicated that the difference between the
means (0.70 and 0.73 with standard deviations of 0.13 and 0.14 for
grey and red, respectively) was highly significant. The difference,
i.e. increase in precision, associated with the red component image
was equal to approximately 5%.

3.6. Size accuracy

On average, only 57% of correctly segmented grey scale knots
accurately represented actual knot size. For the red component
images, 78% were accurately sized. The difference between the two
means was statistically significant (p < 10−15). A greater percent-
age of under-sized segmented knots were associated with the red
component images (averaging 2% grey, 6% red), while a greater per-
centage of over-sized segmented areas were associated with the
grey scale images (42% grey, 16% red), Fig. 10.
There was a much stronger preference for knots correctly
detected through segmentation of the red component image than

Fig. 10. Mean knot size accuracy, grey scale vs. red component, of the 51 veneer
sheets.



170 C.L. Todoroki et al. / Computers and Electron

F

f
k
f
s

4

k
a
r
m
a
s
r
f
s

o
n
h
t

w
c
p

d
a
p
d
r
t
e
r
r
k
o
o
l
o
t
t
w

t
g
t

Lasserre, J.-P., Mason, E.G., Watt, M.S., 2007. Assessing corewood acoustic velocity
ig. 11. Mean knot preference, grey scale vs. red component, of the 51 veneer sheets.

rom grey scale images (Fig. 11). Mean modelling preference for
nots detected from red component images was 90% while that
or grey scale images was 50%. The difference between means was
ignificant (p < 10−15).

. Discussion

The aim of our knot detection project was to accurately detect
not location and size on digital veneer images with emphasis on
chieving high recall rates. Mean recall rate for both grey scale and
ed component images was 0.96, with Training Sheets recording
eans of 0.96 and 0.99, respectively. These results indicate that the

lgorithm performed well within expectations. While there was no
ignificant difference between mean recall rates for grey scale and
ed component images, knot size accuracy was significantly dif-
erent. Knots on the red component images were more accurately
ized, with 78% being perfectly bounded.

In terms of accuracy and precision, the red component images
ut-performed grey scale images by about 4–5%. As red compo-
ent images also gained considerably greater preference scores we
ave adopted the algorithms utilising red component images for
he larger veneer project.

Due to false positive readings, rates for accuracy and precision
ere much lower than the recall rates. However we were not con-

erned with false positives, as these could be easily removed in
ost-processing to increase our performance metrics to 100%.

The requirement in our subsequent research for a 100% knot
etection rate, which is generally not possible with machine vision
pplications (Buehlmann et al., 2007), meant that some post-
rocessing work remained to perfect the data capture. In this
esktop application using MATLAB® we used a mouse-click to
emove the false positive regions. To reduce the false negative rate
o zero we added, through interactive techniques, about 5 knots to
ach sheet. To perfect knot size we reduced the size of about 16% of
egions and increased the size of about 6% of regions. Those regions
equiring reductions were frequently associated with very small
nots of less than 0.25 in. that had been over-estimated (often by
nly a few pixels) as a consequence of the morphological dilation
perations. One way in which we considered tackling this prob-
em was to adapt the size of the structuring element to the area
f the segmented element. However, as the automated knot detec-
ion algorithms presented here have done the bulk of the otherwise
ime-consuming work, we could achieve the 100% level of accuracy
ith a minimal amount of post-processing.
In addition to the 51 full veneer sheets obtained from the single
ree used here, 4 half sheets were obtained. Trials with these sug-
est that the algorithm works equally effectively with these and
hat no additional changes are needed.
ics in Agriculture 70 (2010) 163–171

We next intend to create digital log models from the veneer
sheet knot data for use in subsequent sawing simulations. The
value to this approach is that the data collected on knot size
and position can be used to investigate alternative processing
methods.

For the larger veneer project involving acoustic velocities, we
now have detailed information of knot size and counts as they vary
within a tree from core to surface and from base to top. This will
aid the development of improved models incorporating both acous-
tic and knot variables, for predicting stiffness from the whole tree
through the value chain to the product.
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